Electrically Induced Breathing of the MIL-53(Cr) Metal–Organic Framework
نویسندگان
چکیده
The breathing behavior of the MIL-53(Cr) metal-organic framework (MOF) has been explored previously upon guest-adsorption and thermal and mechanical stimuli. Here, advanced molecular simulations based on the use of an accurate force field to describe the flexibility of this porous framework demonstrate that the application of an electrical field induces the structural switching of this MOF leading to a first-order transition and a volume change of more than 40%. This motivated us to electrically tune the pore size of MIL-53(Cr) with the idea to propose a new concept to selectively capture CO2 over CH4 via a molecular sieving that paves the way toward the optimization of current separation-based processes.
منابع مشابه
MWCNT@MIL-53 (Cr) Nanoporous Composite: Synthesis, Characterization, and Methane Storage Property
In this paper, porous metal−organic frameworks (MIL-53 [CrIII (OH).{O2C-C6H4-CO2}.{HO2C-C6H4-CO2H}x]) were hydrothermally synthesized and, then, a hybrid composite of these synthesized porous metal−organic frameworks (MOF) with acid-treated multi-walled carbon nanotubes (MWCNTs) was prepared. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunau...
متن کاملSynthesis of Nanoporous Metal Organic Framework MIL-53-Cu and Its Application for Gas Separation
MIL-53-Cu has been synthesized hydrothermally and has been used for the first time for gas separation. MIL-53-Cu shows adsorption capacities of 8.1, 0.7 and 0.5 m.mol/g, respectively, for CH4, CO2 and H2 at 30 bar and 298 K. The high CH4 adsorption capacity of MIL-53-Cu maybe attributed to the high pore volume and large number of open metal sites....
متن کاملDirect synthesis of non-breathing MIL-53(Al)(ht) from a terephthalate-based ionic liquid as linker precursor.
An organic imidazolium salt of terephthalic acid has been utilized as a linker precursor for the synthesis of an aluminum-based metal organic framework (MOF) with MIL-53(ht) structure. This material shows the predicted porosity in terms of nitrogen and hydrogen sorption without exhibiting the breathing effect typical for MIL-53(Al) materials.
متن کاملWater Adsorption in Flexible Gallium-Based MIL-53 Metal−Organic Framework
Understanding the adsorption of water in metal−organic frameworks (MOF), and particularly in soft porous crystals, is a crucial prerequisite before considering MOFs for industrial applications. We report here a joint experimental and theoretical study on the behavior of a gallium-based breathing MOF, Ga-MIL-53, upon water adsorption. By looking at the energetics and thermodynamics of Ga-MIL-53,...
متن کاملWater in metal-organic frameworks: structure and diffusion of H2O in MIL-53(Cr) from quantum simulations
The structural and dynamical properties of water in the nanopores of the MIL-53(Cr) metal-organic framework are examined using classical and quantum molecular dynamics simulations. The results indicate that, depending on the number of molecules adsorbed per unit cell as well as on the shape of the nanopores, the explicit inclusion of nuclear quantum effects can either enhance or inhibit the mol...
متن کامل